Erosion control guides

All about erosion, a complete guide? The most effective way of minimizing erosion is to guarantee a permanent surface cover on the soil surface, such as trees, pasture, or meadow. However, compared to original forest soils, soils in pasture fields and croplands have less capacity to hold up and are more susceptible to erosion. These soils also have less capacity to absorb water, which makes flooding (and its economic, social, and environmental impacts) more common. The increasingly high demand of a growing population for commodities such as coffee, soybean, palm oil or wheat is clearing land for agriculture. Unfortunately, clearing autochthonous trees and replacing them with new tree crops that don’t necessarily hold onto the soil increases the risks of soil erosion. With time, as topsoil (the most nutrient-rich part of the soil) is lost, putting agriculture under threat.

Rainwater also mixes with chemicals as it falls from the sky, forming an acidic concoction that dissolves rock. For example, acid rain dissolves limestone to form karst, a type of terrain filled with fissures, underground streams, and caves like the cenotes of Mexico’s Yucatan Peninsula. Back up on the mountains, snow and ice build up into glaciers that weigh on the rocks beneath and slowly push them downhill under the force of gravity. Together with advancing ice, the rocks carve out a path as the glacier slumps down the mountain. When the glacier begins to melt, it deposits its cargo of soil and rock, transporting the rocky debris toward the sea.

Glacial erosion occurs in two principal ways: through the abrasion of surface materials as the ice grinds over the ground (much of the abrasive action being attributable to the debris embedded in the ice along its base); and by the quarrying or plucking of rock from the glacier bed. The eroded material is transported until it is deposited or until the glacier melts. In some arid and desert tracts, wind has an important effect in bringing about the erosion of rocks by driving sand, and the surface of sand dunes not held together and protected by vegetation is subject to erosion and change by the drifting of blown sand. This action erodes material by deflation—the removal of small loose particles—and by sandblasting of landforms by wind-transported material. Read more info on erosion control website.

Soil erosion by water is linked to desertification processes. Its severity is prone to increase as a consequence of changes in the amount of precipitation as well as in its temporal and spatial distribution under prospective climate scenarios (IPCC 2014a). This will exert further pressure on ecosystems water balance and calls thus for adequate soil protection and conservation practices in the framework of ecosystems management (Coutinho and Antunes 2006; Jones et al. 2011; Panagos et al. 2015b, 2015c; Anaya-Romero et al. 2016; Seidl et al. 2016).

Erosion is a top concern for construction sites around the world. In addition to posing a threat to the environment, erosion can pollute surrounding rivers and bodies of water, putting both wildlife and human health at risk. That being said, there is a high need for erosion control measures for construction sites. As a manager in your business, it’s important for you to be prepared to adequately prevent erosion in your area.